Inrush current

Inrush Current


Inrush current or input surge current refers to the maximum, instantaneous input current drawn by an electrical device when first turned on. For example, incandescent light bulbs have high inrush currents until their filaments warm up and their resistance increases. Alternating current electric motors and transformers may draw several times their normal full-load current when first energized, for a few cycles of the input waveform. Power converters also feature high inrush currents relative to their steady state currents. This is typically the charging current of the input capacitance. The selection of overcurrent protection devices such as fuses and circuit breakers is made more complicated when high inrush currents must be tolerated. The overcurrent protection must react quickly to overload or short circuit but must not interrupt the circuit when the (usually harmless) inrush current flows.

Inrush current can also be reduced by inrush current limiters. Negative temperature coefficient (NTC) thermistors are commonly used in switching power supplies, motor drives and audio equipment to prevent damage caused by inrush current. A thermistor is a thermally-sensitive resistor with a resistance that changes significantly and predictably as a result of temperature changes. The resistance of an NTC thermistor decreases as its temperature increases.[1]


When a transformer is initially connected to a source of AC voltage, there may be a substantial surge of current through the primary winding called inrush current which a switch is initially depressed or turned on and off. This is analogous to the inrush current exhibited by an electric motor that is started up by sudden connection to a power source, although transformer inrush is caused by a different phenomenon.

We know that the rate of change of instantaneous flux in a transformer core is proportional to the instantaneous voltage drop across the primary winding. Or, as stated before, the voltage waveform is the derivative of the flux waveform, and the flux waveform is the integral of the voltage waveform. In a continuously-operating transformer, these two waveforms are phase-shifted by 90o. Since flux (Φ) is proportional to the magneto-motive force (mmf) in the core, and the mmf is proportional to winding current, the current waveform will be in-phase with the flux waveform, and both will be lagging the voltage waveform by 90 degrees.

In an ideal transformer, the magnetizing current would rise to approximately twice its normal peak value as well, generating the necessary mmf to create this higher-than-normal flux. However, most transformers aren't designed with enough of a margin between normal flux peaks and the saturation limits to avoid saturating in a condition like this, and so the core will almost certainly saturate during this first half-cycle of voltage. During saturation, disproportionate amounts of mmf are needed to generate magnetic flux. This means that winding current, which creates the mmf to cause flux in the core, will disproportionately rise to a value easily exceeding twice its normal peak.

This is the mechanism causing inrush current in a transformer's primary winding when connected to an AC voltage source. As you can see, the magnitude of the inrush current strongly depends on the exact time that electrical connection to the source is made. If the transformer happens to have some residual magnetism in its core at the moment of connection to the source, the inrush could be even more severe. Because of this, transformer overcurrent protection devices are usually of the "slow-acting" variety, so as to tolerate current surges such as this without opening the circuit.[2]


  1. Ametherm, Inc. What Is Inrush Current? How Is Inrush Current Limited? 2010. [1]
  2. Kuphaldt, Tony R., TRANSFORMERS TUTORIALS: Inrush Current. OpAmp Electronics. 2002. [2].


See also[]