BMET Wiki
Advertisement
Galvanometer

galvanometer is a type of sensitive ammeter: an instrument for detecting electric current.

About[]

A galvanometer is a type of sensitive ammeter or digital multimeter (DMM): an instrument for detecting electric current. It is an analog electromechanical actuator that produces a rotary deflection of some type of pointer in response to electric current through its coil in a magnetic field.

Galvanometers were the first instruments used to detect and measure electric currents. Sensitive galvanometers were used to detect signals from long submarine cables, and to discover the electrical activity of the heart and brain. Some galvanometers use a solid pointer on a scale to show measurements; other very sensitive types use a miniature mirror and a beam of light to provide mechanical amplification of low-level signals. Initially a laboratory instrument relying on the Earth's own magnetic field to provide restoring force for the pointer, galvanometers were developed into compact, rugged, sensitive portable instruments essential to the development of electrotechnology. A type of galvanometer that records measurements permanently is the chart recorder. The term has expanded to include use of the same mechanism in recording, positioning, and servomechanism equipment.

History[]

The deflection of a magnetic compass needle by current in a wire was first described by Hans Oersted in 1820. The phenomenon was studied for both its own sake, and as a means of measuring electrical current. The earliest galvanometer was reported by Johann Schweigger at the University of Halle on 16 September 1820. André-Marie Ampère also contributed to its development. Early designs increased the effect of the magnetic field generated by the current by using multiple turns of wire. The instruments were at first called "multipliers" due to this common design feature. The term "galvanometer", in common use by 1836, was derived from the surname of Italian electricity researcher Luigi Galvani, who, in 1791, discovered that electric current would make a frog's leg jerk.

Originally, the instruments relied on the Earth's magnetic field to provide the restoring force for the compass needle. These were called "tangent" galvanometers and had to be oriented before use. Later instruments of the "astatic" type used opposing magnets to become independent of the Earth's field and would operate in any orientation. The most sensitive form, the Thomson, or mirror galvanometer, was improved by William Thomson (Lord Kelvin) from the early design invented in 1826 by Johann Christian Poggendorff. Thomson's design, which he patented in 1858, was able to detect very rapid current changes. Instead of a compass needle, it used small magnets attached to a lightweight mirror, suspended by a thread. The deflection of a light beam greatly magnified the deflection induced by small currents. Alternatively, the deflection of the suspended magnets could be observed directly through a microscope.

The ability to quantitatively measure voltage and current allowed Georg Ohm to formulate Ohm's Law, which states the voltage across a conductor is directly proportional to the current through it.

The early moving-magnet form of galvanometer had the disadvantage that it was affected by any magnets or iron masses near it, and its deflection was not linearly proportional to the current. In 1882 Jacques-Arsène d'Arsonval and Marcel Deprez developed a form with a stationary permanent magnet and a moving coil of wire, suspended by fine wires which provided both an electrical connection to the coil and the restoring torque to return to the zero position. An iron tube between the magnet's pole pieces defined a circular gap through which the coil rotated. This gap produced a consistent, radial magnetic field across the coil, giving a linear response throughout the instrument's range. A mirror attached to the coil deflected a beam of light to indicate the coil position. The concentrated magnetic field and delicate suspension made these instruments sensitive; d'Arsonval's initial instrument could detect ten microamperes.[1]

Edward Weston extensively improved the design. He replaced the fine wire suspension with a pivot, and provided restoring torque and electrical connections through spiral springs rather like those of a wristwatch balance wheel hairspring. He developed a method of stabilizing the magnetic field of the permanent magnet, so the instrument would have consistent accuracy over time. He replaced the light beam and mirror with a knife-edge pointer, which could be read directly. A mirror under the pointer, in the same plane as the scale, eliminated parallax observation error. To maintain the field strength, Weston's design used a very narrow slot in which the coil was mounted, with minimal air-gap and soft iron pole pieces. This improved pointer deflection linearity with respect to coil current. Finally, the coil was wound on a light weight form made of conductive metal, which acted as a damper. By 1888, Edward Weston had patented and brought out a commercial form of this instrument, which became a standard electrical equipment component. It was known as a "portable" instrument because it was affected very litle by mounting position, or by transporting it from place to place. This design is almost universally used in moving-coil meters today.

Operation[]

The most familiar use is as an analog measuring instrument, often called an ammeter. It is used to measure the direct current (flow of electric charge) through an electric circuit. The D'Arsonval/Weston form used today is constructed with a small pivoting coil of wire in the field of a permanent magnet. The coil is attached to a thin pointer that traverses a calibrated scale. A tiny torsion spring pulls the coil and pointer to the zero position.

When a direct current (DC) flows through the coil, the coil generates a magnetic field. This field acts against the permanent magnet. The coil twists, pushing against the spring, and moves the pointer. The hand points at a scale indicating the electric current. Careful design of the pole pieces ensures that the magnetic field is uniform, so that the angular deflection of the pointer is proportional to the current. A useful meter generally contains provision for damping the mechanical resonance of the moving coil and pointer, so that the pointer settles quickly to its position without oscillation.

The basic sensitivity of a meter might be, for instance, 100 microamperes full scale (with a voltage drop of, say, 50 millivolts at full current). Such meters are often calibrated to read some other quantity that can be converted to a current of that magnitude. The use of current dividers, often called shunts, allows a meter to be calibrated to measure larger currents. A meter can be calibrated as a DC voltmeter if the resistance of the coil is known by calculating the voltage required to generate a full scale current. A meter can be configured to read other voltages by putting it in a voltage divider circuit. This is generally done by placing a resistor in series with the meter coil. A meter can be used to read resistance by placing it in series with a known voltage (a battery) and an adjustable resistor. In a preparatory step, the circuit is completed and the resistor adjusted to produce full scale deflection. When an unknown resistor is placed in series in the circuit the current will be less than full scale and an appropriately calibrated scale can display the value of the previously unknown resistor.

Because the pointer of the meter is usually a small distance above the scale of the meter, parallax error can occur when the operator attempts to read the scale line that "lines up" with the pointer. To counter this, some meters include a mirror along the markings of the principal scale. The accuracy of the reading from a mirrored scale is improved by positioning one's head while reading the scale so that the pointer and the reflection of the pointer are aligned; at this point, the operator's eye must be directly above the pointer and any parallax error has been minimized.

References[]


Links[]

Advertisement