A miniature time-delay fuse used to protect electronic equipment, rated 0.3 amperes at 250 volts. 1.25 inches (about 32 mm) long.


In electronics and electrical engineering a fuse (from the French fusée, Italian. fuso, "spindle") is a type of sacrificial overcurrent protection device. Its essential component is a metal wire or strip that melts when too much current flows, which interrupts the circuit in which it is connected. Short circuit, overload or device failure is often the reason for excessive current.

A fuse interrupts excessive current (blows) so that further damage by overheating or fire is prevented. Wiring regulations often define a maximum fuse current rating for particular circuits. Overcurrent protection devices are essential in electrical systems to limit threats to human life and property damage. Fuses are selected to allow passage of normal current and of excessive current only for short periods.

In 1847, Breguet recommended use of reduced-section conductors to protect telegraph stations from lightning strikes; by melting, the smaller wires would protect apparatus and wiring inside the building. A variety of wire or foil fusible elements were in use to protect telegraph cables and lighting installations as early as 1864.

A fuse was patented by Thomas Edison in 1890 as part of his successful electric distribution system


Rated voltage

Voltage rating of the fuse must be greater than or equal to what would become the open circuit voltage. For example, a glass tube fuse rated at 32 volts would not reliably interrupt current from a voltage source of 120 or 230 V. If a 32 V fuse attempts to interrupt the 120 or 230 V source, an arc may result. Plasma inside that glass tube fuse may continue to conduct current until current eventually so diminishes that plasma reverts to an insulating gas. Rated voltage should be larger than the maximum voltage source it would have to disconnect. This requirement applies to every type of fuse.

Rated voltage remains same for any one fuse, even when similar fuses are connected in series. Connecting fuses in series does not increase the rated voltage of the combination (nor of any one fuse).

Medium-voltage fuses rated for a few thousand volts are never used on low voltage circuits, because of their cost and because they cannot properly clear the circuit when operating at very low voltages.


The speed at which a fuse blows depends on how much current flows through it and the material of which the fuse is made. The operating time is not a fixed interval, but decreases as the current increases. Fuses have different characteristics of operating time compared to current, characterized as fast-blow, slow-blow, or time-delay, according to time required to respond to an overcurrent condition. A standard fuse may require twice its rated current to open in one second, a fast-blow fuse may require twice its rated current to blow in 0.1 seconds, and a slow-blow fuse may require twice its rated current for tens of seconds to blow.

Fuse selection depends on the load's characteristics. Semiconductor devices may use a fast or ultrafast fuse since semiconductor devices heat rapidly when excess current flows. The fastest blowing fuses are designed for the most sensitive electrical equipment, where even a short exposure to an overload current could be very damaging. Normal fast-blow fuses are the most general purpose fuses. The time delay fuse (also known as anti-surge, or slow-blow) are designed to allow a current which is above the rated value of the fuse to flow for a short period of time without the fuse blowing. These types of fuse are used on equipment such as motors, which can draw larger than normal currents for up to several seconds while coming up to speed.



See also[]