BMET Wiki
Advertisement

Brewster's angle (also known as the polarization angle) is an angle of incidence at which light with a particular polarization is perfectly transmitted through a surface, with no reflection. The angle at which this occurs is named after the Scottish physicist, Sir David Brewster (1781–1868).

Explanation[]

When light moves between two media of differing refractive index, generally some of it is reflected at the boundary. At one particular angle of incidence, however, light with one particular polarization cannot be reflected. This angle of incidence is Brewster's angle, θB. The polarization that cannot be reflected at this angle is the polarization for which the electric field of the light waves lies in the same plane as the incident ray and the surface normal (i.e. the plane of incidence). Light with this polarization is said to be p-polarized, because it is parallel to the plane. Light with the perpendicular polarization is said to be s-polarized, from the German senkrecht—perpendicular. When unpolarized light strikes a surface at Brewster's angle, the reflected light is always s-polarized. Although 's' and 'p' polarization states were not named for this convention, it is convenient to remember that 's' polarized light will "skip" off a Brewster boundary and 'p' polarized light will "plunge" through.

The physical mechanism for this can be qualitatively understood from the manner in which electric dipoles in the media respond to p-polarized light. One can imagine that light incident on the surface is absorbed, and then re-radiated by oscillating electric dipoles at the interface between the two media. The polarization of freely propagating light is always perpendicular to the direction in which the light is traveling. The dipoles that produce the transmitted (refracted) light oscillate in the polarization direction of that light. These same oscillating dipoles also generate the reflected light. However, dipoles do not radiate any energy in the direction along which they oscillate. Consequently, if the direction of the refracted light is perpendicular to the direction in which the light is predicted to be specular reflected, the dipoles will not create any reflected light. Since, by definition, the s-polarization is parallel to the interface, the corresponding oscillating dipoles will always be able to radiate in the specular-reflection direction. This is why there is no Brewster's angle for s-polarized light.

Applications[]

Polarized sunglasses use the principle of Brewster's angle to reduce glare from the sun reflecting off of horizontal surfaces such as water or road. In a large range of angles around Brewster's angle the reflection of p-polarized light is lower than s-polarized light. Thus, if the sun is low in the sky reflected light is mostly s-polarized. Polarizing sunglasses use a polarizing material such as Polaroid film to block horizontally-polarized light, preferentially blocking reflections from horizontal surfaces. The effect is strongest with smooth surfaces such as water, but reflections from road and the ground are also reduced.

Photographers use the same principle to remove reflections from water so that they can photograph objects beneath the surface. In this case, the polarizing filter camera attachment can be rotated to be at the correct angle (see figure).

10px-Mudflats-polariser

Photographs taken of mudflats with a camera polarizer filter rotated to two different angles. In the first picture, the polarizer is rotated to maximize reflections, and in the second, it is rotated 90° to minimize reflections - almost all reflected sunlight is eliminated


















Video[]

thumb|300px|right

Advertisement